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Today’s objectives 

Define 2-server private information retrieval


Introduce notion of function secret sharing


Construct distributed point function


Show improved 2-server PIR protocol
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Client wishes to privately 
query one element from a 
large database
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Private Information Retrieval
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Goal: Low Communication 
Semi-honest server 

Question: What about ORAM?
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Private Information Retrieval
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ORAM achieves efficiency 
only in an amortized sense

Goal: Low Communication 
Semi-honest server 

Question: What about ORAM?
6



x0

x1

x2…
xn−1

…
Naive approach, 
unacceptable overhead
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OT requires sending something proportional to all n messages



Two Server PIR x0
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Simpler setting: 

Two-server PIR, at most 
one semi-honest 
corruption of the servers
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XOR Secret Sharing
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[a]
We can imagine trying to secret 
share the database, but it is not 
clear how it will help
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Function Secret Sharing
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Instead, today we will show how 
how to “secret share” the 
client’s query
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Eval( f0, x)

Eval( f1, x)

f0(x)

f1(x)

f(x)⊕

f ∈ ℱ

point(i, x) = {1 if x = i
0 otherwise

Distributed Point Function 
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Distributed Point Function 

point(i, x) = {1 if x = i
0 otherwise

point0(i, ⋅ )

point1(i, ⋅ )
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Distributed Point Function 

point0(i, ⋅ )

point1(i, ⋅ )

point(i, x) = {1 if x = i
0 otherwise
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DPF helps build state-of-the-art OT
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Two Server PIR
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Two Server PIR
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x0 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6

x0 ⊕ x2 ⊕ x5 ⊕ x6
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Two Server PIR
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x0 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6

x0 ⊕ x2 ⊕ x5 ⊕ x6
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Gen
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Eval

Eval

f0(x)

f1(x)

f(x)⊕

Goal: Small function shares

Naive: Shares are  bits longn
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Gen

 bits≈ log n ⋅ λ
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Pseudorandom 
Generator (PRG)

random 
seed

expanded 
random 
string
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How to build a PRF from a PRG
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Goal: Distributed Point Function 

point0(i, ⋅ )

point1(i, ⋅ )

point(i, x) = {1 if x = i
0 otherwise
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High level: Client will ensure 
servers have matching PRG 
seeds “just off” the path to 

the target leaf
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Tree is generated by PRG 

Force equality off the path by sending extra information
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The tricky part is thinking about nodes in the tree 
exactly on the path

Servers disagree on the path, we must arrange that 
they agree just off the path
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Two servers conditionally 
use the correction word, 
depending on their bits b
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Key includes 
correction words
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Key includes 
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 bits≈ λ ⋅ log n

 bits≈ λ ⋅ log n
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point0(i, ⋅ )
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 bits≈ λ ⋅ log n

 bits≈ λ ⋅ log n
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point0(i, ⋅ )

point1(i, ⋅ )

 bits≈ λ ⋅ log n

 bits≈ λ ⋅ log n

1 record

1 record
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Today’s objectives 

Define 2-server private information retrieval


Introduce notion of function secret sharing


Construct distributed point function


Show improved 2-server PIR protocol
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