
Function Secret Sharing
And Private Information Retrieval
CS 598 DH

1

Today’s objectives

Define 2-server private information retrieval

Introduce notion of function secret sharing

Construct distributed point function

Show improved 2-server PIR protocol

2

Private Information Retrieval

x0

x1

x2…
xn−1

3

Private Information Retrieval

x0

x1

x2…
xn−1

PIR

i

xi ?

Client wishes to privately
query one element from a
large database

4

Private Information Retrieval

x0

x1

x2…
xn−1

PIR

i

xi

Goal: Low Communication
Semi-honest server

Question: What about ORAM?
5

Private Information Retrieval

x0

x1

x2…
xn−1

PIR

i

xi

ORAM achieves efficiency
only in an amortized sense

Goal: Low Communication
Semi-honest server

Question: What about ORAM?
6

x0

x1

x2…
xn−1

…
Naive approach,
unacceptable overhead

7

8

x0

x1

x2…
xn−1

1-out-of-n OT

i

xi

9

x0

x1

x2…
xn−1

1-out-of-n OT

i

xi

10

OT requires sending something proportional to all n messages

Two Server PIR x0

x1

x2…
xn−1

x0

x1

x2…

xn−1

Simpler setting:

Two-server PIR, at most
one semi-honest
corruption of the servers

11

XOR Secret Sharing
a0

a1

[a]
We can imagine trying to secret
share the database, but it is not
clear how it will help

12

Function Secret Sharing
f0

f1

[f]
Instead, today we will show how
how to “secret share” the
client’s query

13

Function Secret Sharing
f0

f1

[f]

f0

f

f1

Gen

f ∈ ℱ

14

Function Secret Sharing
f0

f1

[f]

f0

f

f1

Gen

Eval(f0, x)

Eval(f1, x)

f0(x)

f1(x)

f ∈ ℱ

15

Function Secret Sharing
f0

f1

[f]

f0

f

f1

Gen

Eval(f0, x)

Eval(f1, x)

f0(x)

f1(x)

f(x)⊕

f ∈ ℱ

16

f0

f

f1

Gen

Eval(f0, x)

Eval(f1, x)

f0(x)

f1(x)

f(x)⊕

f ∈ ℱ

point(i, x) = {1 if x = i
0 otherwise

Distributed Point Function

17

f0

f

f1

Gen

Eval(f0, x)

Eval(f1, x)

f0(x)

f1(x)

f(x)⊕

f ∈ ℱ

Distributed Point Function

point(i, x) = {1 if x = i
0 otherwise

point0(i, ⋅)

point1(i, ⋅)

18

f0

f

f1

Gen

Eval(f0, x)

Eval(f1, x)

f0(x)

f1(x)

f(x)⊕

f ∈ ℱ

Distributed Point Function

point0(i, ⋅)

point1(i, ⋅)

point(i, x) = {1 if x = i
0 otherwise

19

DPF helps build state-of-the-art OT

20

Two Server PIR

x0 x1x2 x3x4 x5 x6x7

x0 x1x2 x3x4 x5 x6x7

i

21

Two Server PIR

x0 x1x2 x3x4 x5 x6x7

x0 x1x2 x3x4 x5 x6x7

point0(i, ⋅)

i
point1(i, ⋅)

22

Two Server PIR

x0 x1x2 x3x4 x5 x6x7

x0 x1x2 x3x4 x5 x6x7

point0(i, ⋅)

i
point1(i, ⋅)

x0 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6

x0 ⊕ x2 ⊕ x5 ⊕ x6

23

Two Server PIR

x0 x1x2 x3x4 x5 x6x7

x0 x1x2 x3x4 x5 x6x7

point0(i, ⋅)

point1(i, ⋅)
i

x0 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6

x0 ⊕ x2 ⊕ x5 ⊕ x6

24

Gen

f0

f

f1

Gen

Eval

Eval

f0(x)

f1(x)

f(x)⊕

Goal: Small function shares

Naive: Shares are bits longn

25

Gen

 bits≈ log n ⋅ λ
26

Pseudorandom
Generator (PRG)

random
seed

expanded
random
string

27

How to build a PRF from a PRG

28

f0

f

f1

Gen

Eval(f0, x)

Eval(f1, x)

f0(x)

f1(x)

f(x)⊕

f ∈ ℱ

Goal: Distributed Point Function

point0(i, ⋅)

point1(i, ⋅)

point(i, x) = {1 if x = i
0 otherwise

29

30

High level: Client will ensure
servers have matching PRG
seeds “just off” the path to

the target leaf

31

32

33

34

35

36

Tree is generated by PRG

Force equality off the path by sending extra information

37

S0
0 , b0

0 S1
0 , ¬b0

0[$,1]

The tricky part is thinking about nodes in the tree
exactly on the path

Servers disagree on the path, we must arrange that
they agree just off the path

38

S0
0 ,0 S1

0 ,1[$,1]

39

[$,1]

S0
1 , b0

1 S0
2 , b0

2 S1
1 , b1

1 S1
2 , b1

2

PRG

S0
0 ,0 S1

0 ,1

40

[$,1]

S0
1 , b0

1 S0
2 , b0

2 S1
1 , b1

1 S1
2 , b1

2

PRG

[$, $] [$, $]

S0
0 ,0 S1

0 ,1

41

[$,1]

S0
1 , b0

1 S0
2 , b0

2 S1
1 , b1

1 S1
2 , b1

2

PRG

[$, $] [$, $]

[0,0] [$,1]Goal:

S0
0 ,0 S1

0 ,1

42

S0
1 , b0

1 S0
2 , b0

2 S1
1 , b1

1 S1
2 , b1

2[$, $] [$, $]

[0,0] [$,1]Goal:

Key includes
correction words

S0
1 ⊕ S1

1

b0
1 ⊕ b1

1

S0
2 ⊕ S1

2 ⊕ $
b0

2 ⊕ b1
2 ⊕ 1

S0
0 ,0 S1

0 ,1

Two servers conditionally
use the correction word,
depending on their bits b

43

S0
1 , b0

1 S0
2 , b0

2 S1
1 , b1

1 S1
2 , b1

2[$, $] [$, $]

[0,0] [$,1]Goal:

Key includes
correction words

S0
1 ⊕ S1

1

b0
1 ⊕ b1

1

S0
2 ⊕ S1

2 ⊕ $
b0

2 ⊕ b1
2 ⊕ 1

S0
0 ,0 S1

0 ,1

S0
1 , b0

1 S0
2 ⊕ $, b0

2 ⊕ 1

44

S0
1 , b0

1 S0
2 , b0

2 S1
1 , b1

1 S1
2 , b1

2[$, $] [$, $]

[0,0] [$,1]Goal:

Key includes
correction words

Δ = S0
1 ⊕ S1

1

b0
1 ⊕ b1

1

S0
2 ⊕ S1

2 ⊕ $
b0

2 ⊕ b1
2 ⊕ 1

S0
0 ,0 S1

0 ,1

S0
1 , b0

1 S1
2 ⊕ Δ, b0

2 ⊕ 1

45

S0
1 , b0

1 S0
2 , b0

2 S1
1 , b1

1 S1
2 , b1

2[$, $] [$, $]

[0,0] [$,1]Goal:

Key includes
correction words

Δ = S0
1 ⊕ S1

1

b0
1 ⊕ b1

1

S0
2 ⊕ S1

2 ⊕ $
b0

2 ⊕ b1
2 ⊕ 1

S0
0 ,0 S1

0 ,1

S0
1 , b0

1 S1
2 ⊕ Δ, b0

2 ⊕ 1

 bitsλ + 2

46

Key includes
correction words

 bitsλ + 2

cw

[$,1]
PRG

[$, $] [$, $]

[0,0] [$,1]
47

Key includes
correction words

 bitsλ + 2

[0,0]
PRG

[0,0] [0,0]

[0,0] [0,0]

cw

48

cw0

cw1

cw2

49

 bits≈ λ ⋅ log n

 bits≈ λ ⋅ log n

50

point0(i, ⋅)

point1(i, ⋅)

 bits≈ λ ⋅ log n

 bits≈ λ ⋅ log n

51

point0(i, ⋅)

point1(i, ⋅)

 bits≈ λ ⋅ log n

 bits≈ λ ⋅ log n

1 record

1 record

52

Today’s objectives

Define 2-server private information retrieval

Introduce notion of function secret sharing

Construct distributed point function

Show improved 2-server PIR protocol

53

