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Today’s objectives

Define 2-server private information retrieval
Introduce notion of function secret sharing
Construct distributed point function

Show improved 2-server PIR protocol
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Client wishes to privately
query one element from a
large database
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Goal: Low Communication
Semi-honest server

Question: What about ORAM?
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Goal: Low Communication
Semi-honest server

ORAM achieves efficiency
only in an amortized sense
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Question: What about ORAM?



Naive approach,
unacceptable overhead
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Abstract, Publicly accessible databases are an indispensable resource for retrieving up-to-date
information. But they alsc pose a significant risk to the privacy of the user, since a curious databgse
operaior can follow the user’s queries and infer what the user is after. Indeed, in cases where the
users’ intentions are to be kept secret, users are often cautious about accessing the database, It can be
shown that when accessing @ single database, 10 completely guarantee the privacy of the user. the
whole datzbase sheould be down-loaded; namely # bits should be communicated (where n is the
number of bits in the datzbase).

In this work, we investigate whether by replicating the dawabase, more efficient solutions 10 the
private retrieval problem can be obtained. We describe schemes that enable a user to access Kk
replicated copies of a database (& = 2) and privaiely retrieve information stored in the database. This
mcans that cech individual scrver (helding a replicated copy of the databasc) gets no information on
the identity of the item retrieved by the user. Our schemes use the replicet:ion te gain substantial
saving. In particular, we present £ two-server acheme with eommunication complexity (2(n'/?).
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odcdi@wisdorm weizmann acil; M. Sudan, Laboratary for Computer Science, Massachusetts Institute
of Technalogy, 545 'l echnology Square. Cambndgs, MA 02159, e-mal: madm@thenry.les.mit edu.
Permission to make digital/hard copy of part or all of this work for persana’ or clessroom use is
grantcd without fee proviced that the copics are not made or distributed for profit or commercizl
advantege, the copynght natice, the titic of the punhieation, and 118 dete appear, and notiee 15 given
that copying is by permission of the Association for Computing Machincry (ACM), Irc. To copy
otherwise, to republish, to post an servers, ar ta redistribute o Lists, requires prar speeific permssion
and/or a fee

© 1599 ACM (KI02-5411/991T00-08965 $5.00

Jeuzaal of the ACM. Vol. 45, No. 5. November 1996, ap. 565-582




|
- <

E . 1-out-of-n OT




OT requires sending something proportional to all n messages
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Two Server PIR

Simpler setting: \
Two-server PIR, at most

one semi-honest
corruption of the servers
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XOR Secret Sharing
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We can imagine trying to secret

share the database, but it Is not
clear how It will help
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Function Secret Sharing
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Instead, today we will show how /

how to “secret share” the
client’s query
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Distributed Point Function
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Distributed Point Function
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Distributed Point Function
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DPF helps build state-of-the-art OT

Efficient Pseudorandom Correlation Generators:
Silent OT Extension and More*
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Abslract, Secuce multoacty compatation [MPO) often relies o souroes of conrelated randannass
lor better efficiercy ard suwphety This ¢ particulary vseful for MPC wita no hoasst majority
where input-independert correlatsd randomness snables a lightweizh: “ner-cryptog-aphic” online
phasa on~e the inpnts zre knewn Howewear ginee the amonn: of correlated randomness typically
scalca with the eircuit size of the function being compured, sceurcly gencrating corrclated random-
s forws an efficiency bottlensk. involving a large smxnont of coerenunication and storage:
A natural boo. for nddressing the okeve limitations 4 a peenderandem corvelation gencrotor | PLC).
A I'CC allows wo or more partics to securely gencrate loog sources of uscful correlated randomness
via @ loecal axpansion of correlated short seeds anc ne interaction. FCLS enable MPC with senr
preproceasing, where a small amcunt of interaction used for s2cu-ely sampling the seeds is followed
hw silent local zeneration of correlated pRendocandnmness.
A soneretely efficent PCC for Veotor OLE correlations was recently ostained by Boyle et al. (CCS
2018) based on varlan:s of the learn'rg parity with notse (LPN) assumption ovar larze flelds In
thie werk, we mitiate a svetematic gtudy of PUGSE and presont concretay efhewot congtructione for
several types of vseful MI'C corrclations, \We obrain tae folowing main corteibutions
PCG fvundations. We give a peneral security deflniton e PCGs Ow Jdefinition sullices
for any MPC protocol satislying a stronger security requiramant that is met by existing proto-
cols, We prove that a stromger sccurity roquirement is ndecd necessary, and wstiy cur PCC
definition by ruling out a strerger and more nataral defiritior.

—~ Silent OT extenzion. We presxmt the first concretely efficient FOG for obl vious tranefer cor-
relal crs, Its security is buesed om & varent o e birery LPN assumption aad any correlation-
robust hash fanction. We expoct # to provide = faster alternative to the IKNFP O'1 axtension
prutocu]l {Cryvolo "03) when communication = Lz bottlemsck, We presenl sever al applications,
incloding protocols for non-dnersctive gero.anowledpe with hoarced-ranzanle preprocessing
from birary LP'N, and cancretely eficient related-key oblivioas pseudorandom fanctions.

~ PCGx for sitmple 2-party cormelalions. We o'stain POGs [0 several oblee typess o7 wedul
2-party corralations, including (aathanticatad) cne-time trutk-tanles and Beaver tripke. While
the latter POGs e slower thar owr PCO e OT, they are still practically feasilde. These
PCCs are based on a host of assunptions and teckniques, in2uding spesislized homomorpaic
secret shanag schemes and pseudorendon generasors tailored to their structure

— Nnltiparty enrrelations. We abtzin PCOs for meltparty oorrelations that ean be vsed
to make the circuil-dependent communication of MPC protocels acale hnearly (instead of
qradracically) wilh the el er of pariees

1 Introduction

Correlated secrel rundompess is a valuable resource for secure muoll -paciy comautation (MPC)
A sitople examyle is a common random key that is given o two parbies, who can later use
it us a ope-bine d (or secury pesssge Lransmission. In the context of MPC, o more uselul
ccample is a randomn olliwows Gansfer (OT) cormelation, inoalhoch ome party is given a pai- of
ranciom hits (more generally, strirgs) (s¢. 51) and tha other party is given the pai- (r,s.) ‘o~
a mandom hit v The OT correlation can serve as a hesis for general MPC protocols with no
homest mwajority [GMWST, Kila8. 7”803, Other kinds of wwo-party comrelations that are nsefnl

* This is a full verasion of [ECCT19).
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Two Server PIR
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Two Server PIR
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Two Server PIR
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Two Server PIR
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Function Secret Sharing: Improvements and Extensions®

Elette Boyle' Niv Gilboa' Yuval Ishai®

July 24, 2018

Abstract

Function Secret Sharing (FSS), introduced by Boyle et al. (Eurocrypt 2015), provides a way
for additively secret-sharing a function from a given function family F. More concretely, an

m-party FSS scheme splits a function f: {0, 1}" — G, for some abelian group G, into functions
fisooo s fom, described by keys &y .., k., such that f = f, + ...+ [, and every strict subset of
the keys hides f. A Distributed Point Function (DPF) is a special case where F is the family of
point functions, namely functions f, 4 that evaluate to § on the input a and to 0 on all other

inputs.

FSS schemes are useful for applications that involve privately reading from or writing to
distributed databases while minimizing the amount of communication. These include different
flavors of private information retrieval (PIR), as well as a recent application of DPF for large-
scale anonymous messaging,

We improve and extend previous results in several ways:

¢ Simplified FSS constructions. We introduce a tensoring operation for FSS which is
used to obtain a conceptually simpler derivation of previous constructions and present our
new constructions.

¢ Improved 2-party DPF. We reduce the key size of the PRG-based DPF scheme of Boyle
et al. roughly by a factor of 4 and optimize its computational cost. The optimized DPF
significantly improves the concrete costs of 2-server PIR and related primitives.

¢ FSS for new function families. We present an efficient PRG-based 2-party FSS scheme
for the family of decision trees, leaking only the topology of the tree and the internal node

labels, We apply this towards FSS for multi-dimensional intervals. We also present a
( : I l general technique for obtaining more expressive FSS schemes by increasing the number of
parties

e Verifiable FSS. We present efficient protocols for verifyving that keys (k5,..., k5L ), ob-
tained from a potentially malicious user, are consistent with some f € F. Such a ver-
ification may be critical for applications that involve private writing or voting by many

sers,

Keywords: Function secret sharing, private information retrieval, secure multiparty com-
putation, homomorphic encryption

"This is a full version of [10]

"IDC Herzliya, Isracl, eboyle®alus.mit, eduy,

'Ben Gurion University, Israel gilboan@bgu.ac.il

YTechnion, Israel, and UCLA, USA. yuvali®@cs.technion.ac.il.
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How to Construct Random Functions

ODED GOLDREICH, SHAFI GOLDWASSER,
AND SILVIO MICALI

Massachuses Insticute of Technology, Cambridge, Massachusetts

Abstract. A constructive theory of randomness for functions, based on computational complexity. is
developed. and a pseudorandom function generator is presented. This generator is a deterministic
polynomial-time algorithm that transforms pairs (g, r), where g is any one-way function and r is a
random k-bit sinng, to polynomial-time computable functions f: {1, ..., 2% — {1,..., 2%, These /;'s
carnot be distinguished from randvm functions by any probabilistic polynomial-time algonthm that
asks ard receives the value of a function at arguments of its choics. The result has applications in
cryptography, mandom constructions, and complexity theory.

Categonies and Sudject Descrintors: FO [Theory of Computation]: Gereral: F.1.| [Computation by
Abstract Devices]: Models of Computation—computability theory; G.0 [Mathematics of Compuring):
General; (.3 | Mathematics of Computing|: Probability and Statistics—probabilistic algorithms: random
number generalion

General Terms: Algorithms, Secunity, Theory
Additional Key Wards and Phrases: Cryptography. onc-way functions, prediction problems, randomness

I have set up on a Manchester compuier a small programme
using only 1000 units of storage. wkereby the machine supplied
with one sixteen figure number replies with anather within two
seconds. [ would def anvone to learn rom these replies suffi-
cient aboui the programme 1o be able to predict any replies to
untried values.

A. TuriNnG

1. Introduction

What is meant by saying that ceriain junctions “behave randomiy”?

[n this paper we provide a precise answer to the above question. We then present
an efficient way to construct functions that behave randomly, if one-way functions
exist. We conclude by demonstrating applications of our construction.

Randomness has attracted much attention in the second half of this century.
However, most of the previous work focused on measuring the randomness of
strings.

Q. Goldreich wassupported in part by a Weizmann postdoctorzal fellowship; S. Goldwasser was supported
in part by an IBM faculty devzslopment award (1983) and National Science Foundation grant DCR
83-09905; and 5. Micali was supported dy a Naticnal Science Foundation grant DCR 84-13577 and an
IBM facuity development Award (1984).

Authors’ present addresses: O. Goidreich, Computer Science Department. Technion. Haifa 32000 Israel:
S. Geldwasser and S. Micali, Laboratory for Computer Science, Massachusctts [nstitute of Technology,
545 Technology Square, Cambridge, MA 02139.

Permussion to copy without fee all or part of this maienial is granted provided that the copies are not
made or distnbuted for direct commercial advantage. the ACM copynght notice and the title of the
publication and its date appear, and notics 15 given that copying is by permission of the Association for
Computing Machinery. 1o copy otherwise, or to republish, requires a fee and/or spec:fic permission.
© 1936 ACM (004-5411,/86/1000-0792 $00.75

Joumal of the Assoaator for Computing Machinery, Vol 33, No 4, Octeber 1985, op. 792-807.
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How to build a PRF from a PRG



Goal: Distributed Point Function
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High level: Client will ensure

servers have matching PRG

seeds “just off” the path to
the target leaf
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Tree is generated by PRG

Force equality off the path by sending extra information
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The tricky part is thinking about nodes In the tree
exactly on the path

Sy by [$,1] Sy> by

AN AN

Servers disagree on the path, we must arrange that
they agree just off the path
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Two servers conditionally
use the correction word,
depending on their bits b



Key includes
correction words
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Key includes
correction words
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Key includes
correction words
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~ A - log n bits

E ~ A - logn bits
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~ A - log n bits

E ~ A - logn bits
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~ A - log n bits

1 record

~ A - logn bits

1 record
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Today’s objectives

Define 2-server private information retrieval
Introduce notion of function secret sharing
Construct distributed point function

Show improved 2-server PIR protocol



